If $$ $$
$$\frac{1}{fuck}+\frac{1}{suck}+\frac{1}{cock}=0$$ --(1)
And $${fuck}+{suck}+{cock}=sin^2shit+cos^2shit $$ --(2)
Find
$${fuck}^2+{suck}^2+{cock}^2$$
Well, to start we know the right side of (2) is 1
$$\because sin^2shit+cos^2shit=1 $$
This after all is pythagoras's shit although history tells us it came out from some other asshole.
So $${fuck}+{suck}+{cock}=1$$
Squaring both sides
$$\equiv ({fuck}+{suck}+{cock})^2=1$$
Expanding the square...
$$\equiv {fuck}^2+{suck}^2+{cock}^2+$$
$$ +2(suckcock+cockfuck+fucksuck)=1$$
$$\therefore rearranging $$
$${fuck}^2+{suck}^2+{cock}^2=1-$$
$$2(suckcock+cockfuck+fucksuck)$$
Now from (1)
$$\frac{1}{fuck}+\frac{1}{suck}+\frac{1}{cock}=0$$
$$\equiv \frac{suckcock+cockfuck+fucksuck}{fucksuckcock}=0$$
$$\therefore suckcock+cockfuck+fucksuck=0$$
$$\therefore {fuck}^2+{suck}^2+{cock}^2=1-2\times0=1-0=1$$
$$\Box$$